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Abstract 

A simple one-dimensional, axisymmetric model of a gas-pressure deformation calorimeter 
containing a lumped heat source accounts for observed pressure changes in terms of conductive 
and radiant components of heat transfer. Agreement is generally good between experimental data 
and the predicted calorimeter response for the range of source dimensions, heating rates, and test 
temperatures investigated in the study. 
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Introduction 

A new version of a previously described [1-3] deformation calorimeter has 
been developed to simultaneously measure the heat and work of solid deforma- 
tion. The calorimeter is a heat-flux device which senses the differential pres- 
sure change in a gas at constant differential volume surrounding a sample which 
is deformed along the centerline of a sealed sample chamber, as illustrated sche- 
matically in Fig. 1. The sample is deformed in tension via an Invar pullwire ex- 
iting the bottom of the sample cell through an airtight, frictionless, mercury- 
drop seal. An identical pullwire located in a reference cell compensates for vol- 
ume-induced pressure changes in the sample cell caused by displacing the wire, 
so that the differential pressure is independent of the position of the pullwires, 
i.e., the axial strain on the sample. In the absence of sample dilatation any tran- 
sient pressure change during the deformation of a solid sample is the result of a 
temperature rise in the gas caused by a heat flow between the sample and the 
cell wall. The pressure-volume effects resulting from sample dilatation can be 
nearly eliminated by choosing samples of sufficiently small dimensions that the 
fractional change in gas volume due to sample dilatation is negligible in com- 
parison to the pressure changes associated with the thermal processes. 
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Fig. 1 Gas-pressure deformation calorimeter 
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In a previous paper [ 1] equations were derived for the steady-state and tran- 
sient pressure response by assuming a calorimeter model which considers only 
conductive heat transfer between the heat generation source and the sample cell 
wall. For sample dimensions of practical interest size effects were calculated to 
be negligible for the conduction model. Since that time experimental data have 
been obtained which indicate that sample size effects are significant with regard 
to both the steady-state and transient pressure response of the calorimeter. The 
purpose of this paper is to extend the previous analyses to include radiant heat 
transfer and sample size effects in an attempt to quantify the heat exchange pro- 
cesses which occur in gas-pressure, heat-flux, microcalorimeters. A simple ax- 
isymmetric model of the calorimeter with a lumped source term is used to 
obtain analytic solutions which correct for sample mass and size effects on ob- 
served pressure response. Agreement between model predictions and experi- 
mental data for well defined heating histories and source properties would 
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confirm the proposed mechanisms of heat transfer and provide a methodology 
for interpreting calorimeter data from more complicated specimen geometries. 

Theory 

The gas-pressure calorimeter is considered to be a one-dimensional, axisym- 
metric system with radial heat conduction and radiation. The calorimeter ends 
are ignored and only the radial direction is considered. Relationships between 
the heat generation rate by a source, the resulting temperature distribution in the 
calorimeter cell, and the volumetric average pressure are required. A cylindri- 
cal heat source of radius, ri, represents the deforming sample or resistance heat- 
ing wire located along the centerline of a hollow cylindrical cell of  radius, ro, 
and length, L, in a calorimeter block of large thermal mass, as illustrated in 
Fig. 2. The annular space between the source and cell wall is occupied by a qui- 
escent gas (usually air) at initial temperature, To, and pressure, Po. 

The applicable form of the lumped first law of thermodynamics for a heat 
source with a time-dependent, volumetric, internal heat generation rate, Q~, 
when no work is done is 

= Oi - at (I) oCV  

\ 

I 

T 
Fig. 2 Geometry of calorimeter model 
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The instantaneous temperature, 0 = (T~-To), is the temperature difference be- 
tween the source at uniform temperature, T~, and the constant cell wall tempera- 
ture, To. The internal energy change of the heat source is represented by the left 
hand side of Eq. (1) where p is the density and, C, the heat capacity of the 
source having volume, Vi. The right hand side of Eq. (1) is the heat flow bal- 
ance for the source expressed as the difference between the rate of heat genera- 
tion into the Control volume Qi, and the rate of heat transfer out of the control 
volume to the isothermal calorimeter block Qo. Typical temperature changes as- 
sociated with microwatt-level heat flows are less than one degree i.e. 0 < 1 K, 
so that heat transfer from the source to the calorimeter wall through the sur- 
rounding gas is primarily by conduction and radiation. Consequently, Qo = 
Qc + Qr, where Qc and Qr are the heat transfer rates by conduction and radia- 
tion, respectively, and 

pCVi ~2- : 0 i -  [0c + Or] 
o t  

(2) 

The instantaneous heat transfer rate by conduction through a gas of thermal 
conductivity, kg, in the concentric cylindrical geometry is assumed to be 

- 2 r t k ~ L  
oo: ldr, o 

7 ~ ) 
The net rate of radiant heat transfer between the source and cell wall is given 

by (4) 

oAi tT  ? - r41 
0 , :  1 - + ~ . - y - l ~  (4) 

where, ~=5.7•  -s w/m2-K 4 is the Stefan-Boltzman constant and, Ai, Ao, are 
the surface areas of the source and calorimeter cell wall respectively with, ~i, 
eo the associated emissivities. The fourth-power temperature difference in 
Eq. (4) can be expanded about a mean temperature, 7" = (Ti+ To)/2, with the re- 
sult that; (~4-T4)=4T30+7"303.  For temperature differences, O, of only a few 
degrees we can set, 7" ~To, and obtain, (Tin-To 4) ~ 4To30, to 99 % accuracy for To 
near ambient. 

For all geometries of interest, Ai << Ao, so that the net rate of radiant heat 
flow from the cylindrical source to the calorimeter cell wall from Eq. (4) be- 
comes simply 

J. ll'~ermal Anal., 44, 1995 



LYON, RABOIN: DEFORMATION CALORIMETERS 781 

Or = 87~FiL(~i T3 0 (5) 

From Eqs (2, 3 and 5) the applicable version of the lumped energy equation 
for the heat source in the calorimeter becomes 

t30 0 
pCV~ -~t = ~ R (6) 

or equivalently 

/90 + 10 = R Qi (7) 
~t x x 

with 

In (ro/ri) 
R = (2nkgL) + [(8xriLtseiT 3) In (ro/ri)] (8) 

the external resistance to heat flow having units of K/Watt, and x, the time con- 
stant of the source given by 

pCri 2 In (ro/ri) 
T :  

2k~ + 8rcritsaiTo 3 In (ro/ri) 

(9) 

In order for a lumped analysis of the heat source in the calorimeter to be 
valid the resistance to heat flow within the source must be small compared to 
the external resistance to heat flow by the surrounding gas so that temperature 
gradients within the source are negligible and the source can be considered to 
have a single, uniform temperature, T~. The relevant dimensionless variable in 
this regards is the Blot modulus, Bi, which represents the ratio of the condUc- 
tive, internal resistance to heat transfer, (EIAi)/k,, to the external resistance to 
heat transfer, RAi, for R defined by Eq. (8) and a source of thermal conductivity 
ks. An error of less than five percent using a lumped formulation requires that 
Bi<0. 1, i.e. 

Bi - (V/Ai)/ks < O. 10 (10) 
RAi 

In anticipation of the calibration experiments in the following section the 
Biot modulus is evaluated for the maximum heating wire radius used in the 
studies, ri= 0.5 mm, corresponding to a source volume Vi= nri2L, and surface 
area A~= 2rcr~L. The calorimeter cell has a radius, ro= .011 m, length, 
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L= 0.287 m, and contains air of thermal conductivity, ks= .0261 W/m-K, at 
298 K and atmospheric pressure. For a Nichrome heating wire thermal conduc- 
tivity, ks= 13 W/m-K, the Biot modulus is 

Bi = ks + [4rit~iT~ In (rJrl)l ~ 4x10-4 
2k~ in (ro/ri) 

(11) 

well within the range of applicability for a lumped analysis of the source. 
An exact solution for 0 cannot be obtained from Eq. (7) without specifying 

a particular heating history. However the general solution for 0 for the initial 
condition 0= 0, at t= 0, is 

t 

0(t) = R ~ exp[- (t - ~) / 17] Qid~ 
17 

o 

(12) 

Next it is necessary to relate the differential gas pressure in the calorimeter 
to the temperature difference, 0(t). To do this assume an ideal gas at initial pres- 
sure Po, for which the differential pressure change AP(t), is proportional to the 
instantaneous volume average temperature, 

1 
AP(t) = -~ ~ ~v 0(t)dV (13) 

Substitute the temperature difference of Eq. (12) into the integrand of 
Eq. (13) and separate geometric and temporal quantities to obtain the following 
functional form the quasi-isothermal gas-pressure calorimeter response to an 
arbitrary heat flow to/from a source of fixed dimensions 

AP(t) =IP~ 1 -~o -V I R d v ] e x p t - ( t - ~ ) / X ] Q i d ~ l  
V o 17 J 

= [G(x)l[F(t, Q)] (14) 

Evaluating the first bracketed term on the right hand side of Eq. (14) re- 
quires an integration over the gas volume, V= n(r2-ri2)L, with dV= -2nLridri .  
Defining a new dimensionless variable, x= r/ro, and substituting Eq. (8) into 
the integrand for R, with the condition that, r~ << ro. The bracketed term G(x),  
is expressed as 

1 
i !-x n x4, 

G(x) - To V d - 4rcksLTo 1-13In(x) 
dx (15) 
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where 13= 4riF.iffTo3/kg is a dimensionless ratio of radiation/conduction terms 
which is a constant for a particular source volume. The term, Pd4nkgLTo- G(O) 
is the calorimeter response for a line source, x= 0. The integral term on the 
right hand side of Eq. (15) approaches unity as, x, approaches zero, i.e. G(x) 
--->G(O), as x--~O. G(x) is a time-independent function of the source, cell, and 
gas properties and geometries at fixed temperature which cannot be solved ana- 
lytically but is easily evaluated by numerical integration between the indicated 
limits: xi-- r.Jro and xi= ro/ro= 1. 

The last bracketed term on the right hand side of Eq. (14) 

t 

F(t, Q) = ~ exp[-  (t - ~)/x] Qid~ 

o 

is a convolution integral of the arbitrary heating history, Q~, with the single-ex- 
ponential kernel function, (I/x) exp(-t/~), and is a function of time only for 
fixed test geometry and temperature (5). In order to test the axisymmetric 
model of  the calorimeter containing a lumped heat source experimentally 
Eq. (14) was solved by substituting the simple square-wave heating history, 

with the result 

Q~ = [U(t) - U ( t -  t')]Q ~ (16) 

AP(t) = G(x)Q~ - exp[-  t/r]) (t < t') (17a) 

AP(t) = G(x)Q~ - t / x]) (t _> t') (17b) 

The steady-state pressure response of. the calorimeter, AP(oo), to a constant ~ 
rate of heat generation by the source, QO, is obtained analytically by setting 
t= ~,  in Eq. (17a) 

AP(~) = G(x)Q ~ (18) 

which corresponds to an experimental observation when t'>>x. Figure 3 shows 
the heating history of Eq. (16) and the predicted pressure response of the calo- 
rimeter according to Eq. (17) for a heating duration, t'>>x. 

In the following sections the validity of the axisymmetric, one-dimensional 
calorimeter model is tested by comparing experimental and predicted values of 
x and G(x) for different source dimensions and test temperatures�9 Equation (18) 
provides a simple experimental procedure for determining G(x) using steady- 
state gas pressure measurements at constant heat flow for various source diame- 
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Fig. 3 Predicted pressure response to square wave heating,history for l>>'c 

ters, temperatures, and gas properties for comparison:to values predicted by 
Eq. (15). Equation (17) allows for the determination of x as a function of source 
and gas properties and geometry from the transient respoiise to a step change in 
heat flow for comparison to Eq. (9) 

Experimental 

Electrical resistance heating experiments were performed in the calorimeter 
using 15 cm long Nichrome V wires (Stableohm 650, California Fine Wire) of 
diameter 0.102, 0.203, 0.320, 0.406, 0.635, 0.813 and 1.016 mm. A source 
length effect study was conducted using 5, 10 and 15 cm lengths of the 
�9 320 mm wire. The heating wires were attached via gold pin connectors to Tef- 
lon clad, 24G copper wire which exited the top and bottom of the calorimeter 
cell through air-tight seals. The electrical resistance of the Nichrome heating 
wires was determined to an accuracy of +1 mohm using a 4-arm bridge 
(Hewlett-Packard Model 3455A). A programmable current source (Keithley 
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Model 220) provided a square wave current pulse of adjustable duration and 
amplitude to the heating wires. The current in the Nichrome resistance wire 
contained in the calorimeter cell was monitored to _+0.1 mA using a multimeter 
(Fluke Model 77) in parallel with the current source and Nichrome heating 
wire. The rate of heat generation by the wire in the calorimeter cell was calcu- 
lated form the measured current, I, and wire resistance, f2 as, QO= 12~. The 
electrical heating experiments were conducted at calorimeter cell temperatures 
of 278, 298, 318 and 338 K. 

100 

0.1 

0.01 

1 3 -  

- 10 

(2- 

r 1.0 

/ 
�9 5 cm wire 

�9 l O c m  

�9 15cm 

I | I I I I I  I I I I I I I I I  I I I I I I I I I  I I I I I I I I 1  

0.10 1.0 10 100 

(~o, miitiwatts 
Fig. 4 Steady-state pressure vs. heating rate for 5, 10 and 15 cm long heating wires 

The transient and steady-state gas pressure change in the calorimeter cell 
was measured for several heating rates between 0. 10 and 100 mW. A linear re- 
gression of these data, weighted for low heating rates and forced through the 
origin, was performed, to determine the ratio of steady-state pressure to constant 
heating rate, AP(oo)/Q ~ for each individual wire diameter at a particular cell 
temperature. The average time constant, x, for the pressure response was deter- 
mined in accordance with Eq. (17) as the time required for the pressure to rise 
to 63% of the steady-state value after initiation of current flow, or fall to 37% 
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of the steady-state value after the cessation of heating. The transient pressure re- 
sponse closely approximated single exponential behavior in all cases. The nu- 
merical value of x obtained from the rise and fall time were in exact agreement. 

Results 

The .measured ratio of the steady-state pressure for a constant heat flow, 
AP(oo)/Q~, and the experimental values of the time constant, x, are reported in 
Tables 1 and 2, respectively, for the combinations of wire diameter and tem- 
perature examined in the study. A small but systematic decrease in AP(oo)/Q ~ 
with increasing wire (source) diameter is observed .for each individual cell tem- 
perature. A more pronounced decrease in AP(~)/Q ~ with temperature at con- 
stant source diameter is also observed. 

Table  1 Experin)ental  values of steady-state pressure  response  per unit heat flow, 

AP(oo)/QO (KPa/Wat t ) ,  for different heating wire diameters and cell temperatures  

Heating wire  diameter/  

ITtm 

Steady-state pressure /heat  flow, AP(oo)/QO/ 

KPa.Watt -1 

To = 278 K ~To = 298 K To = 318 K To = 338 K 

0.102 - 3.53 - - 

0.203 4 .00 3.50 3.09 2.76 

0.320 - 3.45 - - 

0 .406 4.03 3.42 2.92 2.59 

0.635 - 3.31 - - 

0.813 3.78 3.20 2.81 2.43 

1.016 - 3.14 - - 

Table  2 Exper imenta l  values of  time constant, x (seconds),  for different heating wire  diameters  

and cell temperatures  

Heating wire  diameter /  Time constant, x~ 

m m  see 

To = 278 K To = 298 K To -- 318 K To = 338 K 

0.102 - 1.9 - - 

0 .203 4.5 4.5 4.2 4 .0  

0 .320 - ~9.0 - - 

0 .406 12.8 12.0 11.5 11.2 

0.635 - 26.5 - - 

0.813 37.5 36.5 33.0 31.0 

1.016 - 52.0 - - 
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Representative data for steady-state pressure, AP(oo), vs. heating rate, QO, 
obtained at 298 K for 5, 10 and 15 cm lengths of the .203 mm diameter wires 
are shown in Fig. 4. A linear relationship between steady-state pressure and 
heating rate, independent of source length over the range investigated, is de- 
duced from the unit slope on the log-log plot, as predicted by Eq. (18). Linear 
regressign of the data in Fig. 4 replotted in linear coordinates gives the value, 
AP(oo)/Q~= 3.50 KPa/W which is reported in Table ! for this temperature and 
wire diameter. 

4.25 

4 . 0 0 -  

3,75 - 

3.50 ~ To = 2 7 8 K  

13_ 

o 3.25 
�9 o 0"'-'---6._.._0 

8 T o = 298K 3o0  

2.75 
T O = 318K 

2.50 

2.25 To = 338K 

2.00 ~ ~ ~ ~ ~ ~ ~ ~ ~ I 

0.00 0.20 0.40 0.60 0.80 1.00 1.20 

Heat ing Wire D i a m e t e r ,  mm 

Fig. 5 G(x) ( - - )  as a function of heating wire diameter compared to measured AP(oo)/{~ ~ val- 
ues at cell temperature of 278(o), 298(o), 318(11) and 338 K (El) 

Figure 5 compares all of the experimental data in Table 1 for AP(oo)/{) ~ at 
differen.t source dimensions and cell temperatures to the predicted values 
AP(oo)/Q~ G(x), calculated using Eq. (15). Tabulated values for the thermal 
conductivity of air (6) were interpolated to give, kg= .0245, .0261, .0276, and 
.0292 W/m-K, at cell temperatures, To= 278, 298, 318, and 338 K, respec- 
tively. The calorimeter cell length, L= 0.287 m, and an assumed emissivity of, 
e= 1.0, for the Nichrome wires were also used in Eq. (15) to calculate G(x). It 
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is observed thatthe calculated values for G(x) vs. wire diameter at each tem- 
perature, are in essentially quantitative agreement with the experimental 
AP(m)/Q ~ data. 

To simplify the evaluation of G(x) an empirical equation was obtained by 
curve-fitting the numerical results for the integral Eq. (15) plotted in Fig. 5. 
The resulting analytical approximation of Eq. (15) for use with air as the heat 
transfer medium in the calorimeter and sample emissivities of unity is 

5 ( T~ "~2 14( T~ "~2 1 
G(x)=G(O 1--2[T~f~f J x + 3[T~fr~fJ x2 (19) 

where, T, of= 298 K, is a reference temperature and as previously, x= ri/ro, and 
G(0)= Po/4nkgLTo. Equation 19 is within 1% of the exact results for G(x) plot- 
ted in Fig. 5, and allows direct evaluation of G(x) without numerical integration 
via Eq. (15) for each choice of sample dimension and test temperature. 

The effect of sample thickness changes on the value of G(x) during uniaxial 
deformation in the calorimeter is readily calculated from Eq. (19) by assuming 

3.60 

,77------ 3.40 . ,  ,,. Conduc 

3.30 
r~ ,.,r 

o 3.20 

& 
n 
.~ 3 .10  

3.00 

2.90 -] Conduct ion + Radiatic 

2.80 . ~  
0.00 0.40 0.80 1.20 1.60 2.00 

Heating Wire Diameter, mm 

Fig. 6 G(x) as a function of heating wire diameter for heat transfer by conduction.(---) and 
by combined conduction and radiation ( - - )  compared to measured AP(oo)/Q ~ values 
( * ) a t T o =  2 9 8 K  
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a constant volume deformation process. For a constant volume uniaxial defor- 
mation the principal stretch ratio, L= l/lo, in the loding direction is related to the 
lateral sample dimension, ri, by rJro= x= Xo ~.-'~, where, lo, l, are the initial and 
deformed sample lengths, and, Xo, x, are the dimensionless ratios of sample/cell 

�9 . , , �9 o . , - 1  , 

radius ]n the ]mtial and deformed state, respectively. Substituting, x= xo/7~ ~, m 
Eq. (19) 

( 5/~ To ") 2 _  -~x~ 14t~ To ]2 ~] 
c ( z )  = c ( 0  1 - 7t, ) + (20)  

Evaluating Eq. (20) at, 7~- 1, and, L= 5, for To= Tref= 298 K; xo= 0.045 
(ri= 0.5 mm), it is found that G(L= 5)/G(L= 1)= 1.061. An increase in G(x) of 
about 6% is therefore associated with the lateral contraction of a 1 mm diameter 
sample going from the undeformed state to 400% strain (L= 5) in the calorime- 
ter at constant volume. 

The relative importance of conductive and radiative heat transport on the 
pressure response of the calorimeter was determined by calculating G(x) for a 
Nichrome wire heat source of zero emissivity, i.e., by setting, e= 0, in 
Eq. (15)�9 Figure 6 shows calculated results for G(x) vs.- heating wire diameter 
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Fig. 7 Calculated steady-state pressure/heat flow ratio, G(x), for gases; Krypton, Argon, Air 
and Helium in calorimeter 
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Fig. 8 Measured (,) and predicted (--)  time constant vs. heating wire diameter 

at 298 K for pure conduction (dashed line) compared to the combined conduc- 
tion/radiation restllt (solid line) from Fig. 5. Also plotted in Fig. 6 are ~ e  
measured A P ( ~ ) / Q  ~ values from Table 1. The predicted fall-off in AP(oo)/Q ~ 
with source diameter is a gas-thickness effect in the conduction case, with an 
added radiative surface area effect in the combined conduction/radiation case 
(Eq. (15)). The fraction of the total heat transported by radiation through the 
non-absorbing gas (air) increases from zero to about twenty-five percent with 
increasing source diameter over the range studied. Source size effects on 
steady-state gas pressure arise from the competition between radiant and con- 
ductive heat transfer as determined by the magnitude of the ratio, IB= 
4riF.iGToB/ks, in the denominator of the integrand of Eq. (15). It is clear the a 
combined conduction/radiation heat transfer mode must be invoked to capture 
the experimental data for steady-state gas pressure. 

The effect of gas thermal conductivity on the steady-state pressure/heat flow 
ratio was calculated using Eq. (15) for gases; krypton (k~= 0.0093 W/m-K), ar- 
gon (kg= 0.0172 W/m-K), air (kg= 0.0261 W/m-K), and helium (kg= 
0.1482 W/m-K) at 298 K. Figure 7 shows the results of these calculations for 
G(x) vs. source diameter. As the thermal conductivity of the gas increases calo- 
rimeter sensitivity decreases but source diameter effects become less pro- 
nounced. 
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Time constant x values listed in Table 2 for the 15 cm long wires show a pro- 
nounced dependency on wire diameter (i.e., source dimensions) but only a mi- 
nor dependence on cell temperature. The measured time constant at To= 298 K 
for each wire radius is plotted in Fig. 8 along with calculated values using 
Eq. (9) for heating wire properties, p= 8500 kg/m 3, C= 500 J/kg-K, and, 
e= 1.0, along with the tabulated value, k~= .0261 W/m-K, for the thermal con- 
ductivity of air at 298 K. It is observed that the agreement between measured 
and calculated time constants is very good for the range of source dimensions 
tested. 

4 5 . 0  

42 .5 '  

-~ 4 0 . 0  

(.b 
(].) 
~9 
.,_r 37 .5 '  �9 t- 

t- 
o 

0 35 .0 '  
o 
._E 
F-- 

32.5' 

30 .0  

2 7 . 5  . . . . . . . . . .  

240 260 280 300 320 340 360 

Temperature, Kelvin 

Fig. 9 Measured (e) and predicted ( - - )  time constant v s .  temperature for 0,813 rmn diameter 
heat source in calorimeter 

According to Eq. (9) the effect of temperature on x is primarily through the 
temperature dependence of the gas thermal conductivity, and to a lesser extent, 
the radiant temperature of the source. Values for the thermal conductivity of the 
air in the calorimeter cell over the temperature range examined were determined 
by interpolation of tabulated values (6) using the expression ks(T)= .0028+ 

X " 7.8 10- T(K). Figure 9 is a plot of measured and calculated time constants, x, 
for the 15 cm long, 0.813 mm diameter heating wire v s .  temperature. Agree- 
ment between measured and calculated values appears acceptable. Similar 
agreement was obtained for other wire diameters. 
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Conclusions 

qhe transient and steady-state response of a gas-pressure deformation calo- 
rimeter are well represented by a simple, one-dimensional, linear, axisymmetric 
model of  the calorimeter containing a lumped heat source. Conductive heat 
transport between the source and the cell wall is responsible for the observed 
gas-pressure change in the calorimeter at constant volume. Radiant heat trans- 
port through the non-absorbing gas produces no pressure change but can ac- 
count for a significant fraction of the heat flow as the surface area of the source 
becomes appreciable. The transient pressure response is dominated by the rela- 
tive size and thermal capacitance of the source and surrounding gas in the calo- 
rimeter in a predictable way. Agreement is generally good between 
experimental data and model predictions of calorimeter response over the range 
of source dimensions, heating rates, and test temperatures investigated in the 
study, providing useful insight into the advantages and limitations of this cal- 
orimetric technique. 
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Definition of terms 

Ai 

Ao 

C 
8i,8o 
G(x) 

G(0) 
kg 
ks 
lo, 1 
L 

Po 
Ae(t) 

0 

Surface area of the heat source 
Surface area of the calorimeter cell wall 
Dimensionless ratio of radiant to conduction terms 
Heat capacity of heat source 
Emissivity of source and cell wall, respectively 
Derived geometric quantity relating gas pressure change to source 
and cell parameters 
Value of G(x) at x= 0, i.e. line source 
Thermal conductivity of gas in calorimeter 
Thermal conductivity of heat source in the calorimeter 
Sample length in the undeformed and deformed state, respectively 
Calorimeter cell length= 0.287 m 
Principle stretch ratio of sample in loading direction, ~ - / / l o  
Atmospheric pressure= 1 bar= 100 KPa 
Instantaneous gas pressure change in calorimeter resulting from heat 
flow 
Temperature difference between the source and calorimeter cell wall 
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2o 
0r 
ri 
ro 
p 

Ti 
To 
T 
Vi 
f2 
X 

Total heat flow from source (constant) 
Total heat flow from source (variable) 
Heat flow from source due to conduction 
Radiant heat flow from source 
Source radius 
C a l o r i m e t e r  cel l  radius = 11.1 m m  
Density of heat source 
Stefan-Boltzmann radiation constant 
Heat source temperature 
Calorimeter cell wall temperature 
Time constant of source 
Volume of source 
Electrical resistance of heating wires 
Dimensionless ratio of source to cell radii 
Time variable of integration 
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Zusammenfassung - -  Ein einfaches eindimensionales axensymmetrisehes Modell eines Gas- 
druek-Deformationskalorimeters erkliirt die beobaehteten Druckhnderungen in Abhiingigkeit der 
leitenden und strahlenden Komponenten des W~rmetransportes. FfJr die vorliegend untersuchten 
Bereiche von Strahlungsquellenabmessungen, Aufheizgeschwindigkeiten und Testtemperaturen 
wird im allgemeinen eine gute Ubereinstimmung zwischen experimentellen Daten und vorausge- 
sagter Kalorimeterwirkung beobachtet. 

J. Thermal Anal., 44, 1995 


